26 de junio de 2013

Modelos Atómicos


Demócrito desarrolló la “teoría atómica del universo”, concebida por su mentor, el filósofo Leucipo. Esta teoría, al igual que todas las teorías filosóficas griegas, no apoya sus postulados mediante experimentos, sino que se explica mediante razonamientos lógicos.


“El conocimiento verdadero y profundo es el de los átomos y el vacío, pues son ellos los que generan las apariencias, lo que percibimos, lo superficial”, decía Demócrito hace 2.400 años. 



Demócrito


Sin embargo recien el átomo se empezó a entender solo hace 100 años con la física cuántica. Hace un siglo, los físicos se enfrentaron al reto de descifrar la pieza fundamental que constituye la materia del universo.

A finales del siglo XIX, se observó que cuando un átomo acumula un exceso de energía emite luz de solo ciertos colores (frecuencias).En analogía con la música, el átomo sería como un piano que solo puede emitir los sonidos permitidos por sus teclas, pero no sonidos de una frecuencia intermedia, como lo puede hacer un violín.

En 1897, J. J. Thomson demostró experimentalmente que el átomo no era indivisible, como dice su etimología, sino que contenía partículas ligerísimas de carga negativa, los electrones. Thomson modeló el átomo como una masa de carga positiva que tiene incrustados los electrones.

Ernest Rutherford
Poco después, en 1911, Ernest Rutherford demostró que la masa de carga positiva del átomo está concentrada en su centro, descubriendo así su núcleo. Él modeló el átomo a imagen de un sistema planetario en el que los electrones son los planetas, y el núcleo el Sol. Pero ese modelo estaba en conflicto con un fenómeno básico en física: cuando la trayectoria de una partícula cargada, como el electrón, se curva, esta pierde energía mediante la emisión de radiación.


Max Plank


En 1900, el físico alemán Max Planck se enfrentaba a un fenómeno que estaba en total desacuerdo con la física clásica: el perfil de la gráfica de la radiación emitida por objetos a cierta temperatura. Planck propuso una solución increíblemente acertada: la radiación no se emitía de forma continua, sino a través de pequeños paquetes de energía, los famosos cuantos de Planck. En 1905, Albert Einstein utilizó este hallazgo para explicar el efecto fotoeléctrico; fue su annus mirabilis en que conmocionó al mundo de la física con su teoría de la relatividad especial.


Niels Bohr

El físico danés Niels Bohr en 1911 y con solo 26 años, fue a Inglaterra a trabajar, primero con el grupo de Thomson y después con Rutherford, que acababa de descubrir el núcleo del átomo. Bohr se preguntó: ¿cómo podemos explicar con la física clásica que un átomo emita luz en pequeños paquetes de energía?. El científico danés mantuvo famosos debates con Einstein sobre esta materia

En 1913, Bohr respondió a esta pregunta en tres artículos que describían su modelo del átomo, del que este año se celebra su centenario. El primero de ellos contenía la idea más transgresora: la energía de los electrones que orbitan alrededor del núcleo también viene dada en paquetes, es decir, está cuantizada. Con este supuesto y, dado que la energía del electrón depende de la distancia a la que orbita del núcleo, concluyó que el electrón solo puede orbitar a determinadas distancias, o niveles, del núcleo. Cuando un átomo gana energía, el electrón se desplaza hacia las órbitas más alejadas, y al perderla, salta de órbita en órbita, como si bajara los peldaños de una escalera. Estos saltos, que pueden ser de uno o varios escalones, emiten luz, fotones, cuya frecuencia es proporcional a la diferencia de energía que existe entre los dos niveles orbitales.

De esta manera, tan sencilla, Bohr consiguió explicar muchos de los experimentos sobre la emisión de luz de los átomos. No le importaba que los electrones derraparan al girar y perdieran energía, simplemente postuló que eso no sucedía en estas órbitas, ya que estas eran estables por alguna razón desconocida. El modelo, pese a sus limitaciones, explicaba muchos resultados de las líneas espectrales de los gases y del orden de los elementos en la tabla periódica. 

Hoy sabemos que el átomo de Bohr es demasiado simple, pero introduce rasgos importantes de la física atómica. Aunque al visualizar el mundo cuántico hay que ser siempre precavido, en el caso del átomo es más correcto imaginar los electrones, no como partículas, sino como nubes difusas alrededor del núcleo, cuya densidad en cada punto representa la probabilidad de encontrar el electrón en ese sitio.

Bohr fue un científico emblemático que aglutinó en su instituto a los mejores físicos cuánticos.Famosas fueron sus discusiones con Einstein sobre la interpretación de la física cuántica. En desacuerdo con él, Bohr creía que la naturaleza, en su expresión más íntima, está indeterminada, o sea, que sí juega a los dados. Y acertó.

Hace un siglo, la física cuántica estableció un nuevo paradigma y el conocimiento del átomo supuso un cambio revolucionario en la historia científica y tecnológica del mundo. Ahora, la física cuántica es un recurso sin precedentes para avanzar aún más en la nueva tecnología.

La física cuántica es la teoría física basada en la utilización del concepto de unidad cuántica para describir las propiedades dinámicas de las partículas subatómicas y las interacciones entre la materia y la radiación.



Modelos Atómicos









Modelo Atómico de Rutherford
Modelo Atómico de Bohr 1
Modelo atómico de Bohr 2



No hay comentarios:

Publicar un comentario

Se agradece sólo aportes constructivos.

Nota: solo los miembros de este blog pueden publicar comentarios.

Compartir

Similares:

Related Posts Plugin for WordPress, Blogger...