15 de octubre de 2019

GALAXIES

SPIRAL GALAXIES





Spiral galaxies are twisted collections of stars and gas that often have beautiful shapes and are made up of hot young stars. Most of the galaxies that scientists have discovered so far are spiral galaxies, as opposed to the other two main categories of galaxy shapes — elliptical and irregular.

The Milky Way – the galaxy that includes Earth and our solar system – is an example of a spiral galaxy.

Spiral galaxies make up roughly 72 percent of the galaxies that scientists have observed, according to a 2010 Hubble Space Telescope survey.
Click here for more Space.com videos...

Most spiral galaxies contain a central bulge surrounded by a flat, rotating disk of stars. The bulge in the center is made up of older, dimmer stars, and is thought to contain a supermassive black hole. Approximately two-thirds of spiral galaxies also contain a bar structure through their center, as does the Milky Way. 

The disk of stars orbiting the bulge separates into arms that circle the galaxy. These spiral arms contain a wealth of gas and dust and younger stars that shine brightly before their quick demise.

How the spiral arms form continues to puzzle scientists. One theory suggests the galaxy arms could be the result of density waves traveling through the outer disk. Encounters between galaxies could cause such waves as the mass of the smaller galaxy could affect the structure of the larger galaxy as the two combines.

Spiral galaxies are thought to evolve into elliptical galaxies as the spirals get older. But it's unclear how common elliptical galaxies areas they're made up of older, dimmer stars, and are more challenging to spot.  

One of the largest known spiral galaxies is NGC 6872, which is 522,000 light-years across from the tips of its outstretched spiral arms — that's about 5 times the size of the Milky Way.

In 2017, astronomers discovered an 11-billion-year-old ancient spiral galaxy called A1689B11. Its discovery will help scientists understand how galaxies transition from "highly chaotic, turbulent discs" to more organized and thinner discs, like that of the Milky Way.

This article was updated on Nov. 19, 2018 by Space.com Contributor, Elizabeth Howell.

Have a news tip, correction or comment? Let us know at

 community@space.com.
---------
Spiral galaxy




An example of a spiral galaxy, the Pinwheel Galaxy (also known as Messier 101 or NGC 5457)

Spiral galaxies form a class of galaxy originally described by Edwin Hubble in his 1936 work The Realm of the Nebulae[1] and, as such, form part of the Hubble sequence. Most spiral galaxies consist of a flat, rotating disk containing stars, gas and dust, and a central concentration of stars known as the bulge. These are often surrounded by a much fainter halo of stars, many of which reside in globular clusters.

Spiral galaxies are named by their spiral structures that extend from the center into the galactic disc. The spiral arms are sites of ongoing star formation and are brighter than the surrounding disc because of the young, hot OB stars that inhabit them.

Roughly two-thirds of all spirals are observed to have an additional component in the form of a bar-like structure,[2] extending from the central bulge, at the ends of which the spiral arms begin. The proportion of barred spirals relative to their barless cousins has likely changed over the history of the Universe, with only about 10% containing bars about 8 billion years ago, to roughly a quarter 2.5 billion years ago, until present, where over two-thirds of the galaxies in the visible universe (Hubble volume) have bars.[3]

The Milky Way is a barred spiral, although the bar itself is difficult to observe from Earth's current position within the galactic disc.[4] The most convincing evidence for the stars forming a bar in the galactic center comes from several recent surveys, including the Spitzer Space Telescope.[5]

Together with irregular galaxies, spiral galaxies make up approximately 60% of galaxies in today's universe.[6] They are mostly found in low-density regions and are rare in the centers of galaxy clusters.[7]
Structure

Barred spiral galaxy UGC 12158.



Spiral galaxies may consist of several distinct components:

A flat, rotating disc of stars and interstellar matter of which spiral arms are prominent components

A central stellar bulge of mainly older stars, which resembles an elliptical galaxy
A bar-shaped distribution of stars
A near-spherical halo of stars, including many in globular clusters
A supermassive black hole at the very center of the central bulge
A near-spherical dark matter halo

The relative importance, in terms of mass, brightness and size, of the different components vary from galaxy to galaxy.

Spiral arms

NGC 1300 in infrared light.

Spiral arms are regions of stars that extend from the center of the spiral and barred spiral galaxies. These long, thin regions resemble a spiral and thus give spiral galaxies their name. Naturally, different classifications of spiral galaxies have distinct arm-structures. Sc and SBc galaxies, for instance, have very "loose" arms, whereas Sa and SBa galaxies have tightly wrapped arms (with reference to the Hubble sequence). Either way, spiral arms contain many young, blue stars (due to the high mass density and the high rate of star formation), which make the arms so bright.

Bulge

A bulge is a large, tightly packed group of stars. The term refers to the central group of stars found in most spiral galaxies, often defined as the excess of stellar light above the inward extrapolation of the outer (exponential) disk light.
Using the Hubble classification, the bulge of Sa galaxies is usually composed of Population II stars, which are old, red stars with low metal content. Further, the bulge of Sa and SBA galaxies tends to be large. In contrast, the bulges of Sc and SBc galaxies are much smaller[8] and are composed of young, blue Population I stars. Some bulges have similar properties to those of elliptical galaxies (scaled down to lower mass and luminosity); others simply appear as higher density centers of disks, with properties similar to disk galaxies.

Many bulges are thought to host a supermassive black hole at their centers. In our own galaxy, for instance, the object called Sagittarius A* is believed to be a supermassive black hole. There are many lines of evidence for the existence of black holes in spiral galaxy centers, including the presence of active nuclei in some spiral galaxies, and dynamical measurements that find large compact central masses in galaxies such as NGC 4258.

Bar
Bar-shaped elongations of stars are observed in roughly two-thirds of all spiral galaxies.[9][10] Their presence may be either strong or weak. In edge-on spiral (and lenticular) galaxies, the presence of the bar can sometimes be discerned by the out-of-plane X-shaped or (peanut shell)-shaped structures[11][12] which typically have maximum visibility at half the length of the in-plane bar.

Spheroid

Spiral galaxy NGC 1345
The bulk of the stars in a spiral galaxy are located either close to a single plane (the galactic plane) in more or less conventional circular orbits around the center of the galaxy (the Galactic Center), or in a spheroidal galactic bulge around the galactic core.

However, some stars inhabit a spheroidal halo or galactic spheroid, a type of galactic halo. The orbital behavior of these stars is disputed, but they may exhibit retrograde and/or highly inclined orbits, or not move in regular orbits at all. Halo stars may be acquired from small galaxies that fall into and merge with the spiral galaxy—for example, the Sagittarius Dwarf Spheroidal Galaxy is in the process of merging with the Milky Way and observations show that some stars in the halo of the Milky Way have been acquired from it.

NGC 428 is a barred spiral galaxy, located approximately 48 million light-years away from Earth in the constellation of Cetus.[13]

Unlike the galactic disc, the halo seems to be free of dust, and in further contrast, stars in the galactic halo are of Population II, much older and with much lower metallicity than their Population I cousins in the galactic disc (but similar to those in the galactic bulge). The galactic halo also contains many globular clusters.

The motion of halo stars does bring them through the disc on occasion, and a number of small red dwarfs close to the Sun are thought to belong to the galactic halo, for example, Kapteyn's Star and Groombridge 1830. Due to their irregular movement around the center of the galaxy, these stars often display unusually high proper motion.
Oldest spiral galaxy

The oldest spiral galaxy on file is BX442. At eleven billion years old, it is more than two billion years older than any previous discovery. Researchers think the galaxy's shape is caused by the gravitational influence of a companion dwarf galaxy. Computer models based on that assumption indicate that BX442's spiral structure will last about 100 million years.[14][15]

Related

In June 2019, citizen scientists through Galaxy Zoo reported that the usual Hubble classification, particularly concerning spiral galaxies, may not be supported, and may need updating.[16][17]

Origin of the spiral structure



Spiral galaxy NGC 6384 taken by Hubble Space Telescope.

The spiral galaxy NGC 1084, home of five supernovae.[18]

The pioneer of studies of the rotation of the Galaxy and the formation of the spiral arms was Bertil Lindblad in 1925. He realized that the idea of stars arranged permanently in a spiral shape was untenable. Since the angular speed of rotation of the galactic disk varies with distance from the center of the galaxy (via a standard solar system type of gravitational model), a radial arm (like a spoke) would quickly become curved as the galaxy rotates. The arm would, after a few galactic rotations, become increasingly curved and wind around the galaxy ever tighter. This is called the winding problem. Measurements in the late 1960s showed that the orbital velocity of stars in spiral galaxies with respect to their distance from the galactic center is indeed higher than expected from Newtonian dynamics but still cannot explain the stability of the spiral structure.

Since the 1970s, there have been two leading hypotheses or models for the spiral structures of galaxies:

star formation caused by density waves in the galactic disk of the galaxy.
the stochastic self-propagating star formation model (SSPSF model) – star formation caused by shock waves in the interstellar medium. The shock waves are caused by the stellar winds and supernovae from recent previous star formation, leading to self-propagating and self-sustaining star formation. Spiral structure then arises from differential rotation of the galaxy's disk.

These different hypotheses are not mutually exclusive, as they may explain different types of spiral arms.

Density wave model
Main article: Density wave theory
File: Galaxy



 rotation wave.ogv

Animation of orbits as predicted by the density wave theory, which explains the existence of stable spiral arms. Stars move in and out of the spiral arms as they orbit the galaxy.

Bertil Lindblad proposed that the arms represent regions of enhanced density (density waves) that rotate more slowly than the galaxy's stars and gas. As gas enters a density wave, it gets squeezed and makes new stars, some of which are short-lived blue stars that light the arms.[19]
Historical theory of Lin and Shu

Exaggerated diagram illustrating Lin and Shu's explanation of spiral arms in terms of slightly elliptical orbits.

The first acceptable theory for the spiral structure was devised by C. C. Lin and Frank Shu in 1964,[20] attempting to explain the large-scale structure of spirals in terms of a small-amplitude wave propagating with fixed angular velocity, that revolves around the galaxy at a speed different from that of the galaxy's gas and stars. They suggested that the spiral arms were manifestations of spiral density waves – they assumed that the stars travel in slightly elliptical orbits and that the orientations of their orbits are correlated i.e. the ellipses vary in their orientation (one to another) in a smooth way with increasing distance from the galactic center. This is illustrated in the diagram to the right. It is clear that the elliptical orbits come close together in certain areas to give the effect of arms. Stars, therefore, do not remain forever in the position that we now see them in but pass through the arms as they travel in their orbits.[21]

Star formation caused by density waves

The following hypotheses exist for star formation caused by density waves:

As gas clouds move into the density wave, the local mass density increases. Since the criteria for cloud collapse (the Jeans instability) depends on density, a higher density makes it more likely for clouds to collapse and form stars.

As the compression wave goes through, it triggers star formation on the leading edge of the spiral arms.

As clouds get swept up by the spiral arms, they collide with one another and drive shock waves through the gas, which in turn causes the gas to collapse and form stars.

The bright galaxy NGC 3810 demonstrates the classical spiral structure in this very detailed image from Hubble.

 Credit: ESA/Hubble and NASA.

More young stars in spiral arms

piral arms appear visually brighter because they contain both young stars and more massive and luminous stars than the rest of the galaxy. As massive stars evolve far more quickly, their demise tends to leave a darker background of fainter stars immediately behind the density waves. This makes the density waves much more prominent.

Spiral arms simply appear to pass through the older established stars as they travel in their galactic orbits, so they also do not necessarily follow the arms.] As stars move through an arm, the space velocity of each stellar system is modified by the gravitational force of the local higher density. Also, the newly created stars do not remain forever fixed in the position within the spiral arms, where the average space velocity returns to normal after the stars depart on the other side of the arm.

Gravitationally aligned orbits

Charles Francis and Erik Anderson showed from observations of motions of over 20,000 local stars (within 300 parsecs) that stars do move along spiral arms and described how mutual gravity between stars causes orbits to align on logarithmic spirals. When the theory is applied to gas, collisions between gas clouds generate the molecular clouds in which new stars form and evolution towards grand-design bisymmetric spirals is explained.[23]

Distribution of stars in spirals

The similar distribution of stars in Spirals
The stars in spirals are distributed in thin disks radial with intensity profiles such that[24] [25] [26]


The spiral galaxies light profiles, in terms of the coordinate {\displaystyle R/h}{\displaystyle R/h}, do not depend on galaxy luminosity.

Spiral nebula

Before it was understood that spiral galaxies existed outside of our Milky Way 
galaxy, they were often referred to as spiral nebulae. The question of whether such objects were separate galaxies independent of the Milky Way, or a type of nebula existing within our own galaxy, was the subject of the Great Debate of 1920, between Heber Curtis of Lick Observatory and Harlow Shapley of Mt. Wilson Observatory. Beginning in 1923, Edwin Hubble[27][28] observed Cepheid variables in several spiral nebulae, including the so-called "Andromeda Nebula", proving that they are, in fact, entire galaxies outside our own. The term spiral nebula has since fallen out of use.

Milky Way

The Milky Way was once considered an ordinary spiral galaxy. Astronomers first began to suspect that the Milky Way is a barred spiral galaxy in the 1960s.[29][30] Their suspicions were confirmed by Spitzer Space Telescope observations in 2005,[31] which showed that the Milky Way's central bar is larger than was previously suspected.

Milky Way Galaxy Spiral Arms – based on WISE data.

8 de octubre de 2019

Los descubridores de los primeros planetas extrasolares ganaron el Premio Nobel de Física

Los descubridores de los primeros planetas extrasolares ganaron el Premio Nobel de Física


La academia sueca galardonó a Michel Mayor, Didier Queloz y James Peebles.
Los descubridores de los primeros planetas extrasolares ganaron el Premio Nobel de Física




Mayor, Queloz y Peebles. Foto: Getty Images

Claudio Silva08/10/2019 - ( hace 5 horas )

Michael Mayor y Didier Queloz fueron los responsables del descubrimiento de los primeros planetas fuera del sistema solar. James Peebles es uno de los padres de las teorías cosmológicas que explican cómo surgió el universo. Los tres recibieron el Premio Nobel de Física 2019 de parte de la Real Academia de las Ciencias de Suecia. La institución destacó el aporte de los tres expertos al conocimiento sobre la evolución del cosmos.

Hace menos de 30 años la existencia de planetas fuera del sistema solar era una teoría muy probable, pero nadie lo había podido comprobar con observaciones directas. Fue en 1992 cuando Aleksander Wolszczan y Dale Frail anunciaron el descubrimiento de los primeros planetas extrasolares de la historia. Esos planetas orbitaban una estrella de neutrones, lo que devaluó en algo el descubrimiento.

En 1995 los suizos Michel Mayor y Didier Queloz descubrieron el primer planeta extrasolar en torno a una estrella "normal" y fueron ellos los que recibieron el reconocimiento de la academia sueca. Informa El País que a la fecha se han descubierto más de 4.000 planetas fuera del sistema solar, se estudian algunas de sus atmósferas y se buscará en ellas señales de actividad biológica.

Antes sería el canadiense James Peebles quien elaboró las teorías para explicar cómo empezó todo. En 1964, Robert Wilson y Arno Penzias, dos ingenieros descubrieron un ruido de fondo que no eran capaces de eliminar y cuya procedencia desconocían. Aquella señal fue identificada finalmente como el fondo cósmico de microondas, una radiación fósil que era como una especie de eco del Big Bang.

Más de medio siglo después, Peebles, uno de los científicos que predijo la existencia de aquella radiación, recibió también el Nobel. El impacto de las teorías y los descubrimientos de Peebles, Mayor y Queloz tiene una vertiente existencial. En 1600, el astrónomo Giordano Bruno fue quemado por defender que el sol era una estrella más y que en torno a los astros orbitaban planetas habitados por seres inteligentes.

La segunda parte no se ha comprobado aún, pero ya sabemos que existen infinidad de planetas y que no está prohibido pensar que alguno acoja a seres que piensan. El trabajo de Peebles se acerca al misterio por excelencia, al origen de todo. Este miércoles se conocerá los ganadores del Nobel de Química, el jueves el de Literatura, el viernes el de la Paz y el de Economía se dará a conocer el lunes de la próxima semana.

Compartir

Similares:

Related Posts Plugin for WordPress, Blogger...