27 de junio de 2013

TEORÍA CUÁNTICA: Compilación: P. Cayetano Acuña Vigil.

Teoría Cuántica


Max Planck & Albert Einstein

Es la teoría física basada en la utilización del concepto de unidad cuántica para describir las propiedades dinámicas de las partículas subatómicas y las interacciones entre la materia y la radiación. Las bases de la teoría fueron sentadas por el físico alemán Max Planck, que en 1900 postuló que la materia sólo puede emitir o absorber energía en pequeñas unidades discretas llamadas cuantosEl desarrollo formal de la teoría fue obra de los esfuerzos conjuntos de varios físicos y matemáticos de la época como Schrödinger, Heisenberg, Einstein, Dirac, Bohr y Von Neumann entre otros.

ALBERT EINSTEIN


Otra contribución fundamental al desarrollo de la teoría fue el principio de incertidumbre, formulado por el físico alemán Werner Heisenberg en 1927, y que afirma que no es posible especificar con exactitud simultáneamente la posición y el momento lineal de una partícula subatómica.

En los siglos XVIII y XIX, la mecánica newtoniana o clásica parecía proporcionar una descripción totalmente precisa de los movimientos de los cuerpos, como por ejemplo el movimiento planetario.

MAX PLANK 


Sin embargo, a finales del siglo XIX y principios del XX, ciertos resultados experimentales introdujeron dudas sobre si la teoría newtoniana era completa. Según el modelo del átomo desarrollado a comienzos del siglo XX por el físico británico Ernest Rutherford, los electrones cargados negativamente giran en torno a un núcleo positivo, en órbitas dictadas por las leyes del movimiento de Newton.

En 1902, el físico estadounidense J. Willard Gibbs reconocía la imposibilidad de elaborar una teoría de acción molecular que englobara los fenómenos de la termodinámica, la radiación y la electricidad tal como se entendían entonces.

El primer avance que llevó a la solución de aquellas dificultades fue la introducción por parte de Planck. Lo que hizo Planck fue diseñar una fórmula matemática que describiera las curvas reales con exactitud; después dedujo una hipótesis física que pudiera explicar la fórmula. Su hipótesis fue que la energía sólo es radiada en cuantos cuya energía es hu, donde u es la frecuencia de la radiación y h es el ‘cuanto de acción’, ahora conocido como constante de Planck.

Ernest Rutherford


En 1911, Rutherford estableció la existencia del núcleo atómico.

El físico francés Louis Victor de Broglie sugirió en 1924 que, puesto que las ondas electromagnéticas muestran algunas características corpusculares, las partículas también deberían presentar en algunos casos propiedades ondulatorias.

El concepto ondulatorio de las partículas llevó al físico austriaco Erwin Schrödinger a desarrollar una ‘ecuación de onda’ para describir las propiedades ondulatorias de una partícula y, más concretamente, el comportamiento ondulatorio del electrón en el átomo de hidrógeno.

Las soluciones de la ecuación de Schrödinger también indicaban que no podía haber dos electrones que tuvieran sus cuatro números cuánticos iguales, esto es, que estuvieran en el mismo estado energético. Esta regla, que ya había sido establecida empíricamente por Wolfgang Pauli en 1925, se conoce como principio de exclusión.

ERNST SCHRÖDINGER 


Posteriormente, Schrödinger demostró que la mecánica ondulatoria y la mecánica de matrices son versiones matemáticas diferentes de una misma teoría, hoy denominada mecánica cuántica.

La imposibilidad de determinar exactamente la posición de un electrón en un instante determinado fue analizada por Heisenberg, que en 1927 formuló el principio de incertidumbre.

La mecánica cuántica resolvió todas las grandes dificultades que preocupaban a los físicos en los primeros años del siglo XX. Amplió gradualmente el conocimiento de la estructura de la materia y proporcionó una base teórica para la comprensión de la estructura atómica  y del fenómeno de las líneas espectrales.

Los nuevos campos de la física — como la física del estado sólido, la física de la materia condensada, la superconductividad, la física nuclear o la física de partículas elementales — se han apoyado firmemente en la mecánica cuántica.

La mecánica cuántica está en la base de los intentos actuales de explicar la interacción nuclear fuerte  y desarrollar una teoría unificada para todas las fuerzas fundamentales de la materia.

Sin embargo existen grandes contradicciones teóricas entre la mecánica cuántica y la teoría del caos, que empezó a desarrollarse rápidamente en la década de 1980. Los físicos teóricos como el británico Stephen Hawking siguen haciendo esfuerzos para desarrollar un sistema que englobe tanto la relatividad como la mecánica cuántica.

Síntesis

A finales del siglo XIX y principios del XX, los físicos se vieron obligados a mirar más allá de la mecánica Newtoniana para una teoría más general.

La teoría cuántica surgió a partir de observaciones y experimentos que no podían explicarse por la aplicación de la física clásica.

Básicamente, la física cuántica describe fenómenos que la física clásica no puede: el principio de incertidumbre, la dualidad onda-partícula, y el  entrelazamiento cuántico por ejemplo.

Ideas fundamentales de la Física Cuántica:
 
1. La Energía no es contínua sino que  viaja en unidades discretas o quantums.

2. Las partículas elementales se  pueden comportan como ondas o como partículas.

3. El movimiento de las partículas es aleatorio.

4. Es Fisicamente imposible saber con exactitud la velocidad y posición de una partícula en un momento dado.Cuanto más se sabe de una, menos se sabe de la otra y viceversa.

5. La observación  altera irremediablemente el campo cuántico observado.(Efecto-observador.)
Mientras que la Física de Newton es capaz de calcular la órbita de los planetas y las transformaciones de energía de objetos en movimiento, por su parte la Física Cuántica específica, por ejemplo, de qué manera los electrones envuelven el núcleo atómico.
Parece que la física cuántica no tenga demasiado efecto en nuestro mundo diario hasta que recordamos que toda la materia, incluidos nosotros, no es más que un conjunto de átomos y partículas subatómicas.

Los principios de la  física cuántica  desafían la lógica e intuición.

Que un fotón se pueda comportar como onda o corpúsculo (dualidad onda-partícula), que no se pueda saber con exactitud la velocidad y posición de una partícula (principio de incertidumbre) o que un electrón pueda traspasar una barrera eléctrica aparentemente infranqueable (efecto tunneling) son cosas de un mundo diferente al que vivimos todos los dias.

La Física Cuántica es además el pilar clave en el puente que une materia y conciencia, estableciendo una nueva dimensión de conocimiento del cuerpo y de la mente incitando a una reflexión profunda con espíritu creativo sobre qué es lo que entendemos por realidad y cual es el papel de la conciencia en su construcción.

Demócrito: Teoría Atómica 
Teoría Atómica

Física Cuántica

Link de referencia 
Richard Feynmann: Página de wikipedia

Comparto referencias bibliográficas sobre los textos que son referentes y han sido consultados para elaborar este escrito.

  • Feynman, Richard; Leighton, Robert; Sands, Matthew (1964). The Feynman Lectures on Physics. Vol. 3. California Institute of Technology. ISBN 978-0201500646.
  • Feynman, Richard; Leighton, Robert; Sands, Matthew (1964). The Feynman Lectures on Physics. Vol. 1. California Institute of Technology. ISBN 978-0201500646.
  • Richard Feynman, 1985. QED: The Strange Theory of Light and Matter, Princeton University Press. ISBN 0-691-08388-6. Four elementary lectures on quantum electrodynamics and quantum field theory,            yet containing many insights for the expert.
  • J. O'Connor and E. F. Robertson: A history of quantum mechanics.
  • Introduction to Quantum Theory at Quantiki.
  • Quantum Physics Made Relatively Simple: three video lectures by Hans Bethe
  • Hawking, Stephen; Penrose, Roger (2010). The Nature of Space and Time
  • Ismael, Jann. "Quantum Mechanics". In Zalta, Edward N. (ed.). Stanford Encyclopedia of Philosophy.
  • William Moebs, Samuel J. Ling, Jeff Sanny. Editorial/sitio web: OpenStax. Título del libro: Física universitaria volumen 3. Fecha de publicación: 17 nov 2021. Ubicación: Houston, Texas.   URL del libro: https://openstax.org/books/f%C3%ADsica-universitaria-volumen-3/pages/1-introduccion.   URL de la sección: https://openstax.org/books/física-universitaria-volumen-3/pages/7-2-el-principio-de-incertidumbre-de-heisenberg. 
  • Schrödinger E (1935). "Discussion of probability relations between separated systems". Mathematical Proceedings of the Cambridge Philosophical Society. 31 (4): 555–563. Bibcode:1935PCPS...31..555S. doi:10.1017/S0305004100013554.
  •  Roger Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe, London, 2004.
  • Quantum Entanglement at Stanford Encyclopedia of Philosophy.
//PCAV 040722

FÍSICA CUÁNTICA

Quanta

Max Plank

En física moderna, el fotón (en griego φῶς, φωτός [luz], y -ón) es la partícula elemental responsable de las manifestaciones cuánticas del fenómeno electromagnético. Es la partícula portadora de todas las formas de radiación electromagnética, incluyendo a los rayos gamma, los rayos X, la luz ultravioleta, la luz visible, la luz infrarroja, las microondas, y las ondas de radio.

El fotón tiene una masa invariante cero, y viaja en el vacío con una velocidad constante. Como todos los cuantos, el fotón presenta tanto propiedades corpusculares como ondulatorias ("dualidad onda-corpúsculo").

La idea de la luz como partícula retornó con el concepto moderno de fotón, que fue desarrollado gradualmente entre 1905 y 1917 por Albert Einstein apoyándose en trabajos anteriores de Planck, en los cuales se introdujo el concepto de cuanto. Con el modelo de fotón podían explicarse observaciones experimentales que no encajaban con el modelo ondulatorio clásico de la luz. En particular, explicaba cómo la energía de la luz dependía de la frecuencia (dependencia observada en el efecto fotoeléctrico) y la capacidad de la materia y la radiación electromagnética para permanecer en equilibrio térmico.

Otros físicos trataron de explicar las observaciones anómalas mediante modelos "semiclásicos", en los que la luz era descrita todavía mediante las ecuaciones de Maxwell, aunque los objetos materiales que emitían y absorbían luz estaban cuantizados. Aunque estos modelos semiclásicos contribuyeron al desarrollo de la mecánica cuántica, experimentos posteriores han probado las hipótesis de Einstein sobre la cuantización de la luz (los cuantos de luz son los fotones).

El concepto de fotón ha llevado a avances muy importantes en física teórica y experimental, tales como la teoría cuántica de campos, el condensado de Bose-Einstein y la interpretación probabilística de la mecánica cuántica, y a los inventos como el láser.

La mecánica cuántica es, cronológicamente, la última de las grandes ramas de la física. Comienza a principios del siglo XX, en el momento en que dos de las teorías que intentaban explicar ciertos fenómenos, la ley de gravitación universal y la teoría electromagnética clásica, se volvían insuficientes para esclarecerlos. La teoría electromagnética generaba un problema cuando intentaba explicar la emisión de radiación de cualquier objeto en equilibrio, llamada radiación térmica, que es la que proviene de la vibración microscópica de las partículas que lo componen. Usando las ecuaciones de la electrodinámica clásica, la energía que emitía esta radiación térmica tendía al infinito si se suman todas las frecuencias que emitía el objeto, con ilógico resultado para los físicos.

Es en el seno de la mecánica estadística donde surgen las ideas cuánticas en 1900. Al físico alemán Max Planck se le ocurrió un artificio matemático: si en el proceso aritmético se sustituía la integral de esas frecuencias por una suma no continua, se dejaba de obtener infinito como resultado, con lo que se eliminaba el problema; además, el resultado obtenido concordaba con lo que después era medido.

Fue Max Planck quien entonces enunció la hipótesis de que la radiación electromagnética es absorbida y emitida por la materia en forma de «cuantos» de luz o fotones de energía mediante una constante estadística, que se denominó constante de Planck. Su historia es inherente al siglo XX, ya que la primera formulación cuántica de un fenómeno fue dada a conocer por el mismo Planck el 14 de diciembre de 1900 en una sesión de la Sociedad Física de la Academia de Ciencias de Berlín.

La teoría cuántica fue desarrollada en su forma básica a lo largo de la primera mitad del siglo XX. El hecho de que la energía se intercambie de forma discreta se puso de relieve por hechos experimentales, inexplicables con las herramientas teóricas anteriores de la mecánica clásica o la electrodinámica:

El desarrollo formal de la teoría fue obra de los esfuerzos conjuntos de varios físicos y matemáticos de la época como Schrödinger, Heisenberg, Einstein, Dirac, Bohr y Von Neumann entre otros.

Algunos de los aspectos fundamentales de la teoría están siendo aún estudiados activamente. La mecánica cuántica ha sido también adoptada como la teoría subyacente a muchos campos de la física y la química, incluyendo la física de la materia condensada, la química cuántica y la física de partículas.
.
Mecánica cuántica

Albert Einstein

Partícula portadora

26 de junio de 2013

DEMÓCRITO.TEORÍA ATÓMICA

DEMÓCRITO


Demócrito, en griego Δημόκριτος, (Abdera, Tracia, c. 460 a. C. - c. 370 a. C.) fue un filósofo griego presocrático y matemático que vivió entre los siglos V-IV a. C. 1 2 discípulo de Leucipo.
Demócrito desarrolló la “teoría atómica del universo”, concebida por su mentor, el filósofo Leucipo. Esta teoría, al igual que todas las teorías filosóficas griegas, no apoya sus postulados mediante experimentos, sino que se explica mediante razonamientos lógicos. La teoría atomista de Demócrito y Leucipo se puede esquematizar así:

    Los átomos son eternos, indivisibles, homogéneos, incompresibles e invisibles.
    Los átomos se diferencian solo en forma y tamaño, pero no por cualidades internas.
    Las propiedades de la materia varían según el agrupamiento de los átomos.

Defiende que toda la materia no es más que una mezcla de elementos originarios que poseen las características de inmutabilidad y eternidad, concebidos como entidades infinitamente pequeñas y, por tanto, imperceptibles para los sentidos, a las que Demócrito llamó átomos, término griego que significa "que no puede cortarse".

Epicuro, filósofo posterior que retomó esta teoría, modifica la filosofía de Demócrito al no aceptar el determinismo que el atomismo conllevaba en su forma original. Por ello, introduce un elemento de azar en el movimiento de los átomos, una desviación ('clinamen') de la cadena de las causas y efectos, con lo que la libertad queda asegurada.

Los atomistas pensaban distinto a los eleatas, pues mientras los eleatas no aceptaban el movimiento como realidad, sino como fenómeno, Leucipo y Demócrito parten de que el movimiento existe en sí. Habla por primera vez de la fuerza de la inercia. Demócrito pone como realidades primordiales a los átomos y al vacío, o, como dirían los eleatas, al ser y al no ser. Para Demócrito, la realidad está compuesta por dos causas (o elementos): το ον (lo que es), representado por los átomos homogéneos e indivisibles, y το μηον (lo que no es), representado por el vacío. Este último es un no-ser no-absoluto, aquello que no es átomo, el elemento que permite la pluralidad de partículas diferenciadas y el espacio en el cual se mueven.

Demócrito pensaba y postulaba que los átomos son indivisibles, y se distinguen por forma, tamaño, orden y posición. Se cree que la distinción por peso, fue introducida por Epicuro años más tarde o que Demócrito mencionó esta cualidad sin desarrollarla demasiado. Gracias a la forma que tiene cada átomo es que pueden ensamblarse —aunque nunca fusionarse (siempre subsiste una cantidad mínima de vacío entre ellos que permite su diferenciación)— y formar cuerpos, que volverán a separarse, quedando libres los átomos de nuevo hasta que se junten con otros. Los átomos de un cuerpo se separan cuando colisionan con otro conjunto de átomos; los átomos que quedan libres chocan con otros y se ensamblan o siguen desplazándose hasta volver a encontrar otro cuerpo.

Los átomos estuvieron y estarán siempre en movimiento y son eternos. El movimiento de los átomos en el vacío es un rasgo inherente a ellos, un hecho irreductible a su existencia, infinito, eterno e indestructible.

Al formar los átomos, por necesidad, un vórtice o remolino, (dine) sus colisiones, uniones y separaciones forman los diferentes objetos y seres y la realidad con toda su diversidad. Cada objeto que surge en el universo y cada suceso que se produce, sería el resultado de colisiones o reacciones entre átomos. Aunque la cita "todo cuanto existe es fruto del azar y la necesidad" se atribuye a Demócrito, sus escritos enfatizan en la necesidad , al contrario de Epicuro que enfatizó en el azar.13 El modelo atomista constituye un claro ejemplo de modelo materialista, dado que el azar y las reacciones en cadena son las únicas formas de interpretarlo.

Generalmente, una propuesta, antes de adquirir la condición de ley, parte de ser una mera generalización empírica que aspira a alcanzar un requisito crucial: ser explicada. Una vez hecho esto, la estadística inductiva concreta su idea. Sus premisas dejan de albergar la posibilidad de que la conclusión no se cumpla, y de este modo se constituye la ley. Pues bien, en el caso de Demócrito el desarrollo se invirtió. 

Demócrito comenzó ofreciendo una explicación a una parcela de la realidad la cual no tuvo la oportunidad de observar, ni, en consecuencia, falsar si hubiese cabido; y verificar como cupo en su momento. El verificacionismo no podía ser un requisito esencial a la hora de dar credibilidad a su explicación y confeccionarla como ley, y Demócrito era consciente de ello:

"La mente del hombre estaría formada por átomos esféricos livianos, suaves, refinados y el cuerpo, por átomos más pesados. Las percepciones sensibles, tales como la audición o la visión, son explicables por la interacción entre los átomos de los efluvios que parten de la cosa percibida y los átomos del receptor. Esto último justifica la relatividad de las sensaciones."

"El conocimiento verdadero y profundo es el de los átomos y el vacío, pues son ellos los que generan las apariencias, lo que percibimos, lo superficial."10 ” decía Demócrito hace 2.400 años. Sin embargo, el átomo se empezó a entender solo hace 100 años, cuando fue protagonista de una de las mayores revoluciones científicas: la física cuántica.

Las deducciones de Demócrito y los otros filósofos se realizaban desde la lógica, el pensamiento racional, relegaba la relevancia del empirismo a un último plano, y depositaba escasa fe en la experiencia sensorial, es decir la que apreciaba por los sentidos. En su teoría del atomismo, explica muy bien el por qué: en el atomismo Demócrito defendía que la materia está compuesta por dos elementos: lo que es, representado por los átomos homogéneos e indivisibles; y lo que no es, el vacío, lo que permite que esos átomos adquieran formas, tamaños, órdenes y posiciones, y constituyan así la totalidad de la physis. 

Demócrito explicaba las percepciones sensibles tales como la audición o la visión, con la interacción entre los átomos que emanan desde el objeto percibido hasta los organismos receptores. Esto último es lo que prueba con fuerza la relatividad de las sensaciones.

Link: Internet Enciclopedia of Philosophy

Diogenes Laercio: Demócrito

Bibliography

The fragments and testimonia are collected in 
H. Diels and W. Kranz, Die Fragmente der Vorsokratiker, 6th ed., 3 vols. (Berlin. 1951–1952), vol. II. 
There is a translation of the fragments by K. Freeman, Ancilla to the Pre-Socratic Philosophers (Cambridge, Mass., 1966), and the most important are translated and discussed in
 G. S. Kirk and J. E. Raven, The Presocratic Philosophers (Cambridge, 1957).

Initiated. "Democritus Biography." Scribd. Web. 19 Nov. 2010.

Modelos Atómicos


Demócrito desarrolló la “teoría atómica del universo”, concebida por su mentor, el filósofo Leucipo. Esta teoría, al igual que todas las teorías filosóficas griegas, no apoya sus postulados mediante experimentos, sino que se explica mediante razonamientos lógicos.


“El conocimiento verdadero y profundo es el de los átomos y el vacío, pues son ellos los que generan las apariencias, lo que percibimos, lo superficial”, decía Demócrito hace 2.400 años. 



Demócrito


Sin embargo recien el átomo se empezó a entender solo hace 100 años con la física cuántica. Hace un siglo, los físicos se enfrentaron al reto de descifrar la pieza fundamental que constituye la materia del universo.

A finales del siglo XIX, se observó que cuando un átomo acumula un exceso de energía emite luz de solo ciertos colores (frecuencias).En analogía con la música, el átomo sería como un piano que solo puede emitir los sonidos permitidos por sus teclas, pero no sonidos de una frecuencia intermedia, como lo puede hacer un violín.

En 1897, J. J. Thomson demostró experimentalmente que el átomo no era indivisible, como dice su etimología, sino que contenía partículas ligerísimas de carga negativa, los electrones. Thomson modeló el átomo como una masa de carga positiva que tiene incrustados los electrones.

Ernest Rutherford
Poco después, en 1911, Ernest Rutherford demostró que la masa de carga positiva del átomo está concentrada en su centro, descubriendo así su núcleo. Él modeló el átomo a imagen de un sistema planetario en el que los electrones son los planetas, y el núcleo el Sol. Pero ese modelo estaba en conflicto con un fenómeno básico en física: cuando la trayectoria de una partícula cargada, como el electrón, se curva, esta pierde energía mediante la emisión de radiación.


Max Plank


En 1900, el físico alemán Max Planck se enfrentaba a un fenómeno que estaba en total desacuerdo con la física clásica: el perfil de la gráfica de la radiación emitida por objetos a cierta temperatura. Planck propuso una solución increíblemente acertada: la radiación no se emitía de forma continua, sino a través de pequeños paquetes de energía, los famosos cuantos de Planck. En 1905, Albert Einstein utilizó este hallazgo para explicar el efecto fotoeléctrico; fue su annus mirabilis en que conmocionó al mundo de la física con su teoría de la relatividad especial.


Niels Bohr

El físico danés Niels Bohr en 1911 y con solo 26 años, fue a Inglaterra a trabajar, primero con el grupo de Thomson y después con Rutherford, que acababa de descubrir el núcleo del átomo. Bohr se preguntó: ¿cómo podemos explicar con la física clásica que un átomo emita luz en pequeños paquetes de energía?. El científico danés mantuvo famosos debates con Einstein sobre esta materia

En 1913, Bohr respondió a esta pregunta en tres artículos que describían su modelo del átomo, del que este año se celebra su centenario. El primero de ellos contenía la idea más transgresora: la energía de los electrones que orbitan alrededor del núcleo también viene dada en paquetes, es decir, está cuantizada. Con este supuesto y, dado que la energía del electrón depende de la distancia a la que orbita del núcleo, concluyó que el electrón solo puede orbitar a determinadas distancias, o niveles, del núcleo. Cuando un átomo gana energía, el electrón se desplaza hacia las órbitas más alejadas, y al perderla, salta de órbita en órbita, como si bajara los peldaños de una escalera. Estos saltos, que pueden ser de uno o varios escalones, emiten luz, fotones, cuya frecuencia es proporcional a la diferencia de energía que existe entre los dos niveles orbitales.

De esta manera, tan sencilla, Bohr consiguió explicar muchos de los experimentos sobre la emisión de luz de los átomos. No le importaba que los electrones derraparan al girar y perdieran energía, simplemente postuló que eso no sucedía en estas órbitas, ya que estas eran estables por alguna razón desconocida. El modelo, pese a sus limitaciones, explicaba muchos resultados de las líneas espectrales de los gases y del orden de los elementos en la tabla periódica. 

Hoy sabemos que el átomo de Bohr es demasiado simple, pero introduce rasgos importantes de la física atómica. Aunque al visualizar el mundo cuántico hay que ser siempre precavido, en el caso del átomo es más correcto imaginar los electrones, no como partículas, sino como nubes difusas alrededor del núcleo, cuya densidad en cada punto representa la probabilidad de encontrar el electrón en ese sitio.

Bohr fue un científico emblemático que aglutinó en su instituto a los mejores físicos cuánticos.Famosas fueron sus discusiones con Einstein sobre la interpretación de la física cuántica. En desacuerdo con él, Bohr creía que la naturaleza, en su expresión más íntima, está indeterminada, o sea, que sí juega a los dados. Y acertó.

Hace un siglo, la física cuántica estableció un nuevo paradigma y el conocimiento del átomo supuso un cambio revolucionario en la historia científica y tecnológica del mundo. Ahora, la física cuántica es un recurso sin precedentes para avanzar aún más en la nueva tecnología.

La física cuántica es la teoría física basada en la utilización del concepto de unidad cuántica para describir las propiedades dinámicas de las partículas subatómicas y las interacciones entre la materia y la radiación.



Modelos Atómicos









Modelo Atómico de Rutherford
Modelo Atómico de Bohr 1
Modelo atómico de Bohr 2



Compartir

Similares:

Related Posts Plugin for WordPress, Blogger...